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Interfacial tension of the chiral Potts model 

R J Baxter 
Theoretical physics, IAS and School of Mathematical Sciences, The Aus~dian National 
University, Canbena, ACT 0200, Australia 

Received 27 September 1993 

Abstract. We obtain the interfadal tension of the general solvable N-state chiral Potts model. 
It has exponent @ = (N + 2 ) / ( 2 N )  in bath the horizontal and vertical directions, in agreement 
with the scaling relation 2p = 2 -U. 

1. Jl l t r~uct iou 

The ‘chiral Potts model’ is a planar lattice model with N-state spins that live on the sites 
of the lattice and interact along edges. The ‘solvable’ case is when the interactions are 
chosen as in [l] so that the star-triangle or ‘Yang-Baxter’ relations are satisfied. If the 
lattice is oriented diagonally, as in figure 1. then this ensures that the~row-to-row transfer 
matrices commute. Relying on our experience of previously solved models, we expect that 
for this case it should be possible to calculate the bulk free energy and some other large- 
lattice properties, such as the correlation length ana interfacial tension. The free energy was 
calculatedin [2], and more explicitly in [3,4]. 

The model is ‘superintegrable’ when the vertical rapidities satisfy a particular relation, 
causing the transfer mahix eigenvalues to simplify. The associated Hamiltonian is 
Hermitian. This case has been studied extensively [5-181, particnlarly when N = 3, and 
the correlation lengths and interfacial tensions have been obtained for particular boundary 
conditions [lo]. Until now they have not been calculated for the more general solvable 
ferromagnetic model with real positive Boltvnann weights, which we refer to as the 
‘physical‘ or real model: here we calculate the vertical interfacial tension E ~ .  using the 
results of a previous paper [19]. The horizontal tension follows at once by rotation. 

We use a ‘Z-invariance’ argument [20] that E, should be independent of the vertical 
rapidities. We therefore only need to calculate it for the superintegrable case. Unfortunately 
the previous results for this case [lo] are not applicable, being either in the wrong direction 
or with inappropriate boundary conditions. Here we calculate the appropriate cr, imposing 
skewed boundary conditions so as to force a vertical interface, and using previous results 
[19]. It has the correct 180” rotation symmetry, and in the scaling region is unchangec! by 
,90° rotations (in fact it is then independent of all rapidities, being a function only of the 
temperature variable k’). The critical exponent is 

, 

I 1  

N ~ 2 ‘  
I $= -+ -  

A curious feature is that we expect our results to be true for the general physical model 
all the way to the order-disorder transition, even though the superintegrable case (which has 
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Figure 1. The square lattice C of 2M rows with L sites per row. Tq is the transfer "ix of 
an odd IOW, fq of an even row. 

complex Boltzmann weights) may have an earlier transition to an incommensurate phase 
[7,9,21]. This is because we expect our arguments to be valid for sufficiently small k' and 
there to be no non-analyticities in the physical model as k' approaches the critical value 
k' = 1. 

Our results for the scaling region show that it is energetically unfavourable to interpose 
an intermediate phase between two others, i.e. that there is no wetting. This agrees with 
the low-temperature results of 1191. Presumably there is no wetting at any sub-critical 
temperature. This appears to conflict with the suggestion in [22, 231 that the solvable chual 
Potts is the wetting transition of the OstIund-Huse model. As we mention at the end of 
this paper, this may be explained by the interfacial tension being different in the diagonal 
direction from the horizontal and vertical. 

2. The model 

Consider the square lattice L, drawn diagonally as in figure 1, with L sites per row. At each 
site i there is a spin U;, which takes values 0, . . . , N - 1. We impose periodic boundary 
conditions at the top and bottom of fi, and skewed conditions at the right and left boundmies, 
so that uLt1.01 in the figure are related by uLt1 = cr1 - r,  and similarly for U:+,, U [ ,  etc. 
Here r is some fixed integer such that 0 < r < N. 

Let k be a real constant, 0 4 k c 1, k' = (1 - kz)'/z, and let o = exp(2rri/N), 
dZ = exp(nij/N) for any integer j .  Let a 'rapidity' q he a set of complex numbers 
{aq, bq, cq, dq 1, related by 

a," f k'bf = kd: k'a," f b," = kc,". 

For any two rapidities p ,  q,  and any integer n, define functions (periodic in n of period N )  

With each horizontal dotted line in figure 1 we associate a rapidity q ,  with the vertical 
lines rapidities . . . , p ,  p', p .  p'. . . . altemately as indicated. For edges of L intersected by 
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a vertical p-line, adjacent spins interact with Boltzmann weight Wpq(uj - uj) on sw -+ 
NE edges, and vPq(ui - U") on SE -+ MU edges, as indicated. For the other edges, p is 
replaced by p'. 

The partition function is defined in the usual way as . 
Z, = n(edge  weights) (4) 

Z, = Trace (T,?,)M (5) 

the sum being over all values of all the spins, and the product over the weights of all the 
edges of L. If L has 2M rows (and hence 2LM sites) this can be written [24] as 

where Tq and ?, are the transfer matrices of the two types of row, as in [19,25]. Because 
of the star-triangle relation [l], T, and Tq commute, in the sense that T,?, a TsTq and 
T,T, OC?~T,, for all rapidities q,  s. 

be eigenvalues of T, and Tq, i.e. Tqy = Tqi, ?,z = Gy, where o, y 
are vectors (independent of a). Then 

A 

Let T, and 

the sum being over all eigenvalues. The interfacial tension G between phases U and U - r 
can be defined by [19] 

Here K is Boltzmann's constant and 7 the temperature, and the limit has to be taken so 
that L and M both tend to infinity together. We expect the system to be ferromagnetically 
ordered, the degree of order decreasing to zero as k' increases from 0 to 1, with an order- 
disorder transition at k' = 1. Thus k' is a temperature-like parameter. 

xq = aq/dg Yq = bq/cq f i g  = dq/cq tq x q ~ q  8, = fig . 
Other rapidity variables that we shall use are 

(8) 

kx" 9 l-k'/A, ky,N = l-k'Aq [(Aq-l)/(A,+l)]' = (sN-t:)/(q-"-ttqN) 

(9) 

(10) 
Two further variables are U, ,  ug, related to one another and the others by 

(11) 
A, = -ie*"t sin N(u ,  + u,)/(k'cos Nu,) = i e"'qk' cos Nu, /sin N(u, - U,). 

If U ,  is real, then we can choose U, to be real, between 0 and n / N .  It follows that 
iA,e-""+' is positive real, so we can choose pg exp[i(2uq - n / N ) / 2 ]  also to be positive real. 
With these choices, x,, y,, fig are single-valued analytic functions of U, for U, real. They 
can be continued analytically as single-valued functions of uq throughout the horizontal 

N 

They are related by 

where 
q = [(I - k')/(l + k')]'". 

- ei(uq-c) y, = eXr%+vq) cos Nu, = kcos N u ,  t 4- - eau* 9 -  

strip 2): 

b(u,)l < 41ntl (12) 
in the complex u,-plane. In this strip 0 c Re(u,) c n / N .  

The point U, = -4ilnv (which is when t, = q )  is a branch point of U,. We shall 
need to locally extend D around this point, so that in this vicinity it becomes a two-sheeted 
Riemann surface. The value of U, on one surface is minus the value on the other. At 
the branch point uq is zero. From now on we regard u p ,  u p .  U, as lying in this extended 
domain D. 
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2.1. Real case 

If U,, up,, uq are all real, up.  up,. uq all lie in the interval (0, R J N ) ,  and 

uq - a / N  < U,, up’ < uq (13) 

then the B o l t ”  weights have the physical property that they are all real and positive, 
and we expect the partition function, free energy and interfacial tensions to be analytic 
functions of up ,  u p #  U,. 

2.2. Hermitian case 

Another interesting case is when up,  up’, up - n / ( 2 N )  are all pure imaginary (the imaginary 
parts of U,, up, being numerically less than ilnq), up,  U,‘. pq are real, uq -1r/(2N) is pure 
imaginary, and lpP[ = l p .  = 1. Then xq, w-’’zyq,w-l/ztq, A, are real and positive, 
A, > l/k‘, y, = x; and Wpq( -n)  = Wpq(n). (similarly with p + p‘). It follows that 
T, is the Hermitian cfnjugate of Tq, so the two-row transfer matrix TqFq is Hermitian 
and its eigenvalues TqTq are real. This ‘Hermitian case’ intersects with the real one at the 
‘symmetric point’ up = up’ = 0, U, = uq = n / ( 2 N ) .  

2.3. Superintegrable case 

The ‘alternating superintegrable’ case is when the vertical rapidities p and p’ relations 

A 

U,’ = up up’ = -up. (14) 

3 e n  x,, = y,. yp, = x,, Ag = I fA, and the functional form of the eigenvalues T,, 
T, then simplifies greatly, facilitating the solution of the functional relations. This case 
has been discussed (particularly the homogeneous, sub-case, when up’ = u p  = -4iq and 
ug = up = 0) in a sequence of papers [5-18], and in [19]. It can be realized only in 
the extended domain 2, defined above, and has no intersection with the real case. It does, 
however, have an intersection with the Hermitian case. It can be illuminating to focus on 
this Hermitian sub-case: many of the formulae of section 3, in particular (37) and (36), are 
then explicitly real. 

2.4. Z-invariance and analyticity 

For the real case, using 2-invariance arguments [ZO] ,  we expect the interfacial tensions to 
be independent of p and p’. They are analytic, so this should also be true for the Hermitian 
case, at least provided up,  ug, uq are sufficiently close to the real axis. Further, from low- 
temperature calculations 1191 and consideration of the N = 2 case (when the chiral Potts 
model reduces to the well known Ising model), at least for sufficiently small k‘ we expect 
them to be analytic if we move up and up‘ off the real axis to the neighbourhood of the 
branch point up = -$lnq, or even round this branch point on to the other Riemann sheet 
of the function up (so long as we do not then move too far from the branch point-we do 
expect non-aualyticities when up is real on the other sheet). 

It follows that the interfacial tensions should be independent of p and p’ along such 
paths, so we need only consider the ’alternating superintegrable’ case (14) taking up = up, 
to be close to -filnq, while uq remains on or near the real axis, between 0 and x / N ,  with 
lAql > 1. The result obtained should be true, not only for the superintegrable cast?, but also 
for the real one. It should also hold for the Hermitian case, provided the imaginary parts 
of U,, up’, uq are not too large. 
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There is a difficulty in applying the results to the superintegrahle case itself near the 
critical point k' = 1, since McCoy and his co-workers have argued strongly that there 
can then he transitions to incommensurate phases, causing completely different behaviour. 
Nevertheless, since we do not expect any phase transitions or non-analyticities for the 
physical case as k' increases from 0 to 1, we expect our results to be valid for the physical 
case all the way to the ferromagnetic order-disorder transition at k' = 1. 

3. Eigenvalues Tq, 

In [S, equation (Z.ZZ)] and [18, equation (2.21)] McCoy et d have proposed an ansatz for the 
form of T9 and for the homogeneous superintegrable case (when x p  = xp, = y p  = yp'). 
This has been verified, and generalized to the case (14) with skewed boundary conditions, 
in [19, section 61. Let F ( x )  be a polynomial of degree mp, 

for the superintegrable case 

where the constants U,, . . . , U,, are given by 

Pa, being some integers. 
Define a related function 

Plainly this is a rational function of z. One can verify from (16) that it has no finite non- 
zero poles, so it is a Laurent polynomial. It is invariant under z + o z ,  so it is a Laurent 
polynomial in zN.  Pa and Pb are to be chosen so that P(0) is finite and non-zero, so 
P(z)  is strictly a polynomial in zN. Let its zeros be -11, . . . , -AmE (i.e. P(z) = 0 when 
zN = -Ai). Define 

Then G(O), G(k'), G( l /k ' )  are non-zero and 

and ?, is given similarly, hut with y p  replaced by xp .  (We have replaced the G(A) of 
[I91 by G(l/A), and re-scaled the functions F(x) ,  'P(x).) The Boltimann weights remain 
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finite when any one of a,, 6,. c,, d, tend to zero. Hence so does Tq and it follows that the 
integers Pa, 4 ,  PF are non-negative, satisfying 

They must also satisfy the selection rules 

PF = r mod N 

P b - P a = Q + r + L  mod N 

where me is the eigenvalue of the spin-shift opesator X of [19,25]. 
The mE sign choices in (20) are independent. We have obtained the normalization factor 

D by taking f, = q, Aq = 1 in [19, equation (6.24)]. 
For the Hermitian sub-case, the eigenvalues of T,G are all real, which from (21) implies 

that the IQ are real, for all positive tp. This can only happen if the Ak are all real and positive. 
Since the AL are independent of p and q, this must be true for the superintegrable model in 
general. 

3.1. Maximum eigenvalues 

TO evaluate Z ,  for M large, we need only the largest eigenvalues T ~ .  8. We focus on the 
case mentioned above, when up = up, is close to -filnq and uq is close to the real axis, 
between 0 and R / N .  Then the RHS of (20) is maximized by choosing all the signs to be 
plus. 

The dominant eigenvalues have been calculated in [19] for the low-temperature limit 
I .  From when k’ + 0, xp. y,, xp,, y ~ ,  x, -+ 1, y, + tq. Then A, + CO and G(A,) 

(5.19) therein, we see that these are the eigenvalues (21), with 

Pb = 0 P* = m p  = r .  (25) 

Further, using the variables aj, x defined in [19], and the relation uj = -w-le-”ul given 
before (6.23) therein, U,, . . . , U, form a single string: 

j = l ,  ..., r (26) - &Z-r/2 
I -  

where s = e”X. Thus F ( x )  = A ( m - ’ k x ) ,  where A(x)  is the polynomial 

). 

A(x)  = n ( 1  + mj-(ri1)/2x). 
j s 1  

The relations (16) are. satisfied, provided only that 

Since x is pure imaginary, s is real and positive. 
A related polynomial that we shall need is 
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F m e  2. The equivalent contours CI, Cz in the U plane. The heavy line denotes the bmch 
cut fmm qN t;" to q - N r ~ ~ .  

where (for r > 0) nj = 1 when j = h / 2 ,  else n, = 2. A(x)  and h(x) are real when x is 
real. 

Also define 

[ A 2 1  A - 1  q - N + x N  
212 q N + x N  

g ( A , x )  =In - + - ( )1'*] . 

Using Cauchy's residue theorem, equation (20) can be written 

where U = zN and CI surrounds the negative real axis in the complex u-plane, on which 
the zems U = -4 of P ( z )  are located, as in figure 2. 

Because g(A, CO) = 0, the integrand in (31) tends to zero faster than l / u  as U --f CO, 

so CI can be closed round a full 360" circle at w so as to enclose the whole u-plane apart 
from the negative real axis. Provided tp has an argument between -n /N and n / N ,  and 
1A1 > 1, the only singularity of the integrand now within CI is a branch cut (arising from 
the square root in from (30)) from q"/t," to q-"/t,". (The argument of the logarithm in 
(30) has no zeros in this cut plane.) Hence C1 can now be shrunk down to the contour Cz 
in figure 2, just surrounding the branch cut. Changing the variable of integration to z and 
defining 

we obtain 

the integration now being along the straight-line segment S = (q/fp, r f / fp) .  
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3.2. The limit L + CO 

The expression (33) is exact, for finite L. When L becomes large and z lies on S, the sum 
in (17) is dominated by its j = 0 term, the other terms being exponentially smaller in L. 
Similarly, D is given by (19) and (13, the sum in (17) again being dominated by the j = 0 
term. Hence 

Substituting the resulting simplified form of G(A) into (X), the terms involving P. 
cancel, leaving 

In(T,%) = - 2 L f / K 7  - 2v, 

where f ,  U, are independent of L, being given by 
(35) 

where 
m = s/t ,  

Note that the RHS of (37) involves s and p only via the ratio m. 
The expressions (36) and (37) are explicitly real for the Hermitian sub-case mentioned 

above, s and m then being real and positive. So will be the following alternative 
formulations. The square roots in (30) and (32), and in the following equation (42), should 
be chosen to be positive for this case, and continuous. 

3.3. Free energy 
The quantity f is the free energy per site of the alternating superintegable model in the 
ferromagnetic phase. Remember that the integral over S arose from an integration around 
the branch cut of the square root in g(A,, ~ ~ / ~ z t , ) .  Going back to this form, provided 
IRe(up)l < a / (ZN) .  we can expand the contour of integration to become the union of the 
straight-line segments arg(z) = f a / N .  If we define 

sin(aj/N) 
a[l fx2+2xcos(aj /N)]  @ j ( X )  = (39) 

then (36) becomes 

For the homogeneous superintegrable case, x p  = y p  = 7 'Iz, f i P  = 1 and (40) 
agrees with [6, equation (2311 and [lo, equation (6.13)1, k', x ,  y. G, p ,  tan(0/2), d@ therein 
being in our notation k', x q / x p ,  y p / y q ,  (1 - k')(A, + l)/(A, - 1). (x, - x p ) / ( x ,  - x,"), 
x - ~ I ' ,  - x @ N - I ( x )  dx. In fact, for the more generd alternating case (with p' # p ) .  equation 
(40) should be contained in the result [lo, equation (7.2)] for the row-inhomogeneous 
superintegrable model, but we have not verified this explicitly. 

N 
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4. Interfacial teasion 

Just as (40) can be obtained from (36) by expanding the contour of integration to 
arg(z) = b / N .  so can we change (37) to 

U, =r1npq -lnA(o-1/2mtq)+ $Inh(rlm)+m [@r-l(my) + @ r + ~ ( m ~ ) ]  g(Ap.y)dy. 
(41) 

This transformation is valid for r = 0, . . . , N - 2; for r = N - 1 the function h(x)  has 
zems at x = of'/', so the expanded contour has to be indented to avoid the resulting poles. 
The net effect is that (41) remains valid for r = N - 1, provided we redefine @&) to be 
S ( x  - 1). This is consistent with the j -+ N l i t  of (39). 

Yet another formulation of U, can be obtained by considering the integral of 

mo-'/2A'(o-11Zmy) 
x A(o-l/Zmy) @.(Aq, Y) 

over the contour in the y-plane shown in figure 3. (There is a logarithmic branch cut from 
the origin to tq coming from the function.) The contributions from the segments AB, 
CD, EF, GH, HI give the RHS of (37). Since the integrand is analytic inside the contour, 
the RHS of (37) is therefore the negative of the contributions from BC, DE, FG, IA, so 

I y-plane 

Figure 3. The contour ABCDEFGHI in the y-plane. 
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The results (36)-(42) are analytic provided [A,[ =- 1 and the arguments of m, tp,  dh, 
all lie between - x / N  and n / N .  For the Ising case, when N = 2 and r = 1, the RHS of 
(42) can be evaluated, giving 

We have considered only a particular set of eigenvalues of T,?,, namely those satisfying 
(25) and (26), s taking all positive values allowed by (28). At sufficiently low temperatures 
(i.e. for k’ small) we expect from [19] that for M large this set will dominate the sum in 
(6). The free energy is independent of r ,  so from (35) 

the s u m  being over all allowed values of s. 

positive real axis and the sum in (6) becomes 
When L becomes large, the allowed values of s form a dense distribution along the 

z,/zo = L Jdm ~ ( s )  e-ZMu, ds (45) 

where ur is defined as a function of s by (37), (41) or (42). All we need to know about the 
distribution function R(s)  is that it is positive and independent of t and M. 

For the Hermitian sub-case, U, is a real function of s and has a minimum in the interval 
0 < s -= W. (31 particular, at the symmetric point t, = w ’ ’ ~ ,  (A, - l)/(A, + 1) = qNlz, 
ip = 1, U, is symmetric under s + I/s and the m i n i ”  occurs when s = 1.) Denote the 
minimum (tuming) value as (U,)”. Taking the limit of L and M large, the integral in (45) 
is dominated by the contribution from the neighbourhood of the minimum, so we see from 
(7) that 

c r / K T  = Z(u,)m. (46) 

In general, ur is not real and we have to proceed as in [26] and [27]. The integral in 
(45) can be evaluated for large M by the method of steepest descents, first deforming the 
contour of integration in the complex s-plane so as to pass through the appropriate saddle 
point of the function U, (i.e. the point in the s-plane where its complex derivative vanishes). 
Thus the interfacial tension is still given by (46), pmvided we take (U,)*., to be the value of 
U, at this saddle point. 

4.1. Continuation back to the real case 

We have obtained these results (37), (41), (42) and (46) for the altemating superintegrable 
case, with up in the vicinity of the branch point -$i In q and U, on or near the real axis, with 
0 < Re@,) 4 x / N .  Now recall that U, depends on s and p only via the ratio m = s/tp. 
Thus changing p only re-scales the argument m and does not affect the saddle-point value 
of U,. Hence for the altemating superintegrable model the inte&ciol tension is independent 
o f p .  This is in agreement with the Z-invariance argument mentioned in section 2. In fact, 
using that argument and analytically continuing back to the real case, we expect (37). (41), 
(42) and (46) to be true for the general c h d  Poas model when up ,  up’. U, satisfy (13) and 
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0 c uq c n/N. We also expect them to be true for the Hermitian case, at least provided 
uq is not too far from the real axis. 

More explicitly, U, is defined as a function u,(m) of m by (37), (41) and (42). Let mo 
be the value of m at which u,'(m) vanishes, such that mo is a continuous function of q, 
positive real when 2u, - x / N  is pure imaginary, and unimodular when uq is real. (For the 
symmetric point uq = a / ( Z N )  we have mo = 1.) Then the interfacial tension E, is given 
bY 

e r / K T  = 2ur(m0). (47) 

It depends on the horizontal rapidity q, but not on the alternating vertical rapidities p and 
p'. It can be analytically continued to all real values of U,. Rotating the lattice through 
180" is equivalent to incrementing uq by n / N  and replacing U, by ( n / N )  - uq. (This is 
the automorphism q + Rq defined in [l].) The effect on (42) and (47) is to negate mo and 
to replace er by EN+. This is indeed consistent with the 180" rotation symmetry. 

In general (guided by the near-critical case discussed below), we expect imo to 
lie in the W, probably close to the positive real axis. 

Again, the king case N = 2 is simple and illuminating. The RHs of (43) is stationary 
when m = mo = -itq. with value k"Iz, so 

E I / K T = - I n k '  O c k ' x l .  (4) 

This agrees with [24, equation (7.10.18)], the k therein being our k'. 

4.2. Critical behaviour 

The system becomes critical as k' + 1 and k, 1 + 0. The third form, equation (42), of 
U, is ideal for investigating this limit. From it and (9), keeping m and tq fixed, we deduce 
that for k small 

Vr(m) = P tl (N+2) /2  s i n ( n r / ~ )  i(e-iN%m - eiNU q / m )  (49) 

where 

1 

p = ( 2 / x )  (1 - xN)1 /2dx  = 2g (50) 

This function is stationary when m = mo = -ieiNu*, so from (47) 

E , / K ~  = 4p q(Nc2)/z sin(xr/N) . (51) 

(For N = 2 and r = 1, then p = f and the RHS simplifies to k2/2,  in agreement with (48).) 
This result (51) gives the interfacial tension in the scaling region near criticality. Note 

that it is independent of the horizontal rapidity q, so that it is unchanged by rotating the 
lattice through 90". (For the isotropic near-critical N = 2 King case it is also true that 
cl = &U', where U' is the interfacial tension obtained by Onsager [28]. From our point of 
view &U' is the interfacial tension per unit length in the 45" direction, so this is consistent 
with el being isotropic in the scaling region.) 

In [19] we noted that in the low-temperature limit k' + 0 that 

€ i < 6 k + C i  j = k + l  mod N (52) 
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for 0 c k , l  < N .  This means that it is never energetically favourable to interpose an 
intermediate phase between two others, so there is no wetting. From (51) it is readily 
verified that this is still me in the scaling region, and therefore probably throughout the 
ordered regime 0 < k' c 1. 

From scaling theory we expect that 

7 being the temperature, Z its critical value and /I the critical exponent. For the c h d  Potts 
model, near criticality the Boltrmann weights are linear in the variable kZ, or equivalently 
vN. so we can take (Z - 7 )  to be qN and we see from (51) that p is given by (1). 

Thus p is independent of r and is unchanged by rotations through 90". These results 
differ kom those given in [lo]: there, sh is the vertical tension with free boundary top and 
bottom spins, Q being our r .  From low-temperature calculations along the lines of those 
in [19], it is apparent that this change of boundary condition has a significant effect on the 
vertical interfacial tension, since the interface no longer has to finish in the top row at the 
same point as it staaed at the bottom. For instance, it makes 6, proportional to r ,  so it 
becomes energetically neutral to interpose an intermediate phase between two others. As is 
remarked after equation (6.25) therein, SQ is therefore not the usual interfacial tension. It 
has critical exponent 1. 

The other result reported in [IO] is the interfacial tension sa for the homogeneous 
superintegrable model with fixed boundary spins at top and bottom. Rotating through 90°, 
this should be comparable to our result for e, when up = -4ilng. It is not clear that 
our results can be extended to this singular point in the uq plane so far from the real axis. 
Certainly the critical exponent can be expected to be different, since & now tends to zero 
as we approach criticality. In fact the exponent of s, is 2 / N ,  and it i s  intriguing to note 
that (1) is simply the arithmetic mean of the two exponents reportd in [lo]. The specific 
heat exponent (I is 1 - 2 /N  [2]. In [6] we noted that the superintegrable model appears to 
violate the two-dimensional scaling relation 2 p  = 2 - (I. It is therefore pleasing to note 
from (1) that for the physical chiral Potts model (i.e. the one with real positive Boltzman 
weights) we have regained this scaling relation. 

Our result also has to be reconciled with the suggestion in 122,231 that the chiral 
Potts model is the wetting transition of the Ostlund-Huse model, which presumably implies 
€,,,d(.k+I,N) = EX + 9, in apparent contradiction of our result (52). Those papers consider 
the interfacial tension in what to us is the 45" direction, whereas we are restricted to the 
vertical and horizontal directions. It is conceivable that this is the source of the discrepancy, 
in which case the interfacial tension must be anisotropic for N t 2, even in the scaling 
region. 
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